회귀 모델 2

[평가지표] Mean Percentage Error (MPE)

Mean Percentage Error (MPE) 설명 Mean Percentage Error (MPE)는 회귀 모델 (Regression Model)이 잘 학습되었는지를 확인할 때 사용하는 평가지표입니다. MPE는 Mean Absolute Percentage Error (MAPE)에서 절대값을 제외한 지표이며, MAPE와 다르게 오차에 절대값을 씌어주지 않을 상태로 계산되기 때문에 음수값도 나올 수 있다는 점이 가장 큰 차이점이라고 할 수 있습니다. MAPE는 값이 0에 가까워질수록 모델이 잘 학습되었다는 것을 의미하지만 MPE는 0에 가까워졌다고 하더라도 모델이 잘 학습되었다고 말할 수 없습니다. ※ MAPE에 대한 설명은 아래 링크에서 확인할 수 있습니다. 2022.05.12 - [정리/평가지표] ..

정리/평가지표 2022.06.04

[평가지표] Mean Error (ME)

Mean Error (ME) 설명 Mean Error (ME)는 Mean of Error, Average Error 등 다양한 용어로 불릴 수 있으며, 회귀 모델 (Regression Model)이 잘 학습되었는지를 확인할 때 사용할 수 있는 평가지표 입니다. ME는 실제 정답 값과 예측 값의 차이를 단순하게 산술 평균한 값 입니다. ME의 수식은 아래와 같습니다. 수식에서 $Y_{i}$은 실제 정답 값을 의미하고, $\widehat{Y}_{i}$은 예측 값을 의미합니다. ME의 장단점 - ME의 장점 1. 가장 간단하게 계산이 가능한 평가지표 2. 양의 오차와 음의 오차가 상쇄되기 때문에 예측 모델이 실제 정답 값보다 높게 예측하였는지, 낮게 예측하였는지를 파악하는데 사용될 수 있음 - ME의 단점 1..

정리/평가지표 2022.06.03
반응형