Mean Error (ME) 설명 Mean Error (ME)는 Mean of Error, Average Error 등 다양한 용어로 불릴 수 있으며, 회귀 모델 (Regression Model)이 잘 학습되었는지를 확인할 때 사용할 수 있는 평가지표 입니다. ME는 실제 정답 값과 예측 값의 차이를 단순하게 산술 평균한 값 입니다. ME의 수식은 아래와 같습니다. 수식에서 $Y_{i}$은 실제 정답 값을 의미하고, $\widehat{Y}_{i}$은 예측 값을 의미합니다. ME의 장단점 - ME의 장점 1. 가장 간단하게 계산이 가능한 평가지표 2. 양의 오차와 음의 오차가 상쇄되기 때문에 예측 모델이 실제 정답 값보다 높게 예측하였는지, 낮게 예측하였는지를 파악하는데 사용될 수 있음 - ME의 단점 1..